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1. INTRODUCTION

f

The aim onghis paper is—to emphasize-that there exists a unified ap-
proach for solving initial/value problems for equations in 1, 1+1 (1i.e.,
one spatial and one temporal), and 2+! (i.e., two spatial and one tem-
poral) dimensions. Furthermore it remarks on inverse problems in higher
than two spatial dimensions. Although these inverse problems are not
related to physically significant nonlinear evolution equations, they
are useful in the context of inverse scattering. In this presentation
we emphasize the main ideas. The detail formalisms can be found in

the cited papers.

|

It turns out that solving the initial value problem for some equa-

tions for q(t), or qi(x,t), or gq{x,y,t) is equivalent to solving an
inverse problem for some related eigenfunction Y(z;t), or Y(z;x,t),

DISTRIBL. TION STATEMENT A

or ¥(z;x,y,t). The inverse problem takes the form of a Riemann-Hilbert
(RH) problem for equations in 1 and 1+1, and the form of a nonlocal RH
problem or of a 3(DBAR) problem for equations in 2+1 (a DBAR problem

is generalization of a RH problem). To define the relevant RH or DBAR

Distributdon Unlimited
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problems one needs to study the analyticity properties of ¥ with

respect to z. Furthermore those problems are uniquely defined in terms
of certain asymptotic data of the underlying linear system satisfied

by v: Monodromy data in 1, scattering data in 1+) and some cases of

2+1, and inverse data in some cases of 2+1. We use the Painlevé IV(PIV),
modified KAV (mKdV) and the Davey-Stewartson (DS) as illustrative exam-
ples of equations in 1, 141, and 2+ respectively.

The above inverse problems can be naturally generalized to higher
than two spatial dimensions. For example, the jeneralizaticn of the
inverse problem associated with the DS equation leads to an inverse
problem for a matrix valued function Y(z;xo.x). Z ¢ Cn' Xa tF':

x € Rn, n > 1. However, while the associated potential q(xo.x) depends
on n+1 varjables, the inverse data T(zR,z1,m2,...,mn), L r", Z,¢ RrR",
nh’en, depends on M-!variables. This has important implications: (a)
The inverse data must be appropriately constrained. This “character:i-
zation” of the inverse data is conceptually analogous to the charac-
terization of the inverse scattering data in the multidimensional
Schrodinger equation {1]. (b) The existence of "redundant” scattering
‘parameters can be used to reduce the above problem to one in two spatial
dimensions. This is in contrast to the case of the multidimensional
Schrodinger equation where the inverse problem can be solved in closed
form. (c) Since the inverse problem for ¥ is reduced to one in two
spatial dimensions, it follows that, if one allows ¥ , q to depend
parametrically on t, q(xo,x,t) satisfies an evolution equation reducible
to two spatial dimensions. In particular, the N-wave interaction equa-
tion in n+! spatial dimensions can always be reduced to two spatial
dimensions. Thus a genuine three-spatial-dimensional nonlinear evolution
equation, related to an inverse problem, remains to be found. (It should
be noted that several other "multid.mensional® problems can be reduced
to one or two spatial dimensions, see M. J. Ablowitz's contribution
in these proceedings.)

We first define the standard RH and DOBAR problems.

2. RH AND DBAR PROBLEMS

Let C be a simple, smooth closed contour dividing the complex z-plane

into twc regions D' and U™ (the positive direction of C will be taken ‘oag

; * Ll sud/
as tnat for which D is on the left). Avnliosudger
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A function ¢(z) defined in the entire plane, except for points

Ix

on C, will be called sectionally holomorphic if: (i) the function ¢(z)

| 3
i is holomorphic in each of regions p* and D~ except, perhaps, at z = =; )
(ii) the function ¢(z) is sectionally continuous with respect to C, &:

approaching the definite limiting values 0*(c), 9 (r) as z approaches ;

a point ¢ on C from D*, or D, respectively. The classical homogeneous ;‘

RH problem is defined as follows [2]. Given a contour C, and a function E

Glg) which is Holder on C and det G({) ¢ 0 on C, find a sectionally ]

s holomorphic function ¢(z), with finite degree at = , such that i

1 ot (¢) = G(g)1eT(g), oncC, (2.1) t:;
/ e
where Oz(q) are the boundary values of ¢(z) on C. 1f G({) is scalar, E“

(2.1) is solvable in closed form. If G({) is a matrix valued function, f::

then (2.1) is in general solvable in terms of a gsystem of Fredholm ﬁ
[ integral equations. Various generalizations of the above RH problem S?

are possible. For example: (i) The contour C may be replaced by a L

union of intersecting contours. {(ii) G({) may have simple discontinui- §

ties at a finite number of [eints; in this case one allows ¢®(-' tro ?i

have integrable singularities in the neighbourhood of these points. S;

(iii) RH problems may be considered in other than Holder spaces (e.g. <

{31): (iv) One may consider inhomogeneous RH problems et (g) = G(EIT(¢) %
+ F(g) on C. j:~

.
,‘ . I
'y

The DBAR problem can be defined as follows: Given 38,32, find ¢,

.

j

1€ 3422 = 0 everywhere except on a curve, then the DBAR problem reduces
to a RH problem (since 29/3z = ¢* - ¢, in a distribution sense). The

| DBAR problem can be solved via the following extension of Cauchy's

> _;_. et e T N AT AN W N Y
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formula (4)

! - 1 aY (¢ ) 1 Yog)
viz) 'mf,,zd“d‘z:z"ﬁ—“—’mf * T (2-2)

C

It is interesting that the first RH problem was formulated in connec-
tion with an inverse problem (see [12] for references). Actually RH
problems are intimately related to solutions of inverse problems in

(3

1+1, 2+1, and 1 dimensions:

AR ]

v 55

3. INVERSE PROBLEMS IN 1+1

[
We recall that a necessary condition for a given nonlinear equation 7
for q{x,t) to be solvable via IST is that this equation 1s the compati- E;

bility condition of a Lax pair of linear equations. Let us consider Q}
o
the modified KdV equation )
»
. - 6q%q. = 0 (3.1) %
9. Dy xx 9 9, . ] -
e
» "
as an illustrative example. Equation (3.1) is the compatibility condi- g:
o
tion of !.
~ \_:
Y (zix,t) = iz{J , ¥(z;x,t)) + Q¥lz;x,t); e
t;
e
-3 0 0 q E
J % . Q * (3.2a) o
° ‘ 9 0 ol
v (zix,t) = (U,,¥(zix,t)] + Qeiz:x,t) (3.2b) e
t 0 ®
3
X
.3 2 2 5. 3 ks
-4iz 0 -2129 4qz 021qxz*2q “qx o
U, = ., Q= N
0 0 4123 4q22-21q z*2q3-q quzz R
x xx e
e
We first note that the above Lax pair is isospectral, i.e., g% = 0. e
AlsO 4l tuIns oul that equatiun (3.2a) is of primary importance; equa- Q},
tion (3.2b) plays only an auxiliary role. To solve the initial value S

problem for initial data decaying as |[x|+e , one first formulates an

inverse problem for V¥(z;x,t): Given appropriate scattering data
reconstruct Y.

"

R
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By studying the analytic properties of y with respect to z, where
¢ satisfies (3.2a) one establishes the existence of a y which is
a sectionally meromorphic function of z, with a jump along the Re 2z
axis. This jump as well as the residues of the poles, are given in
terms of appropriate scattering data. Thus the inverse problem is
equivalent to a matrix, regular, continuous RH problem defined along
the Re z axis and uniquely specified in terms of scattering data.

Since in the above discussion we have only used (3.2a), it is evident
that one may pose an inverse problem for any function q(x). However,
this result is useful for solving the initial value problem for q(x,t)
only if g evolves in such a way in t, that the scattering data is known
for all t. If v evolves in t according to (3.2b) (i.e., 'if q solves
{3.1)) then it turns out that the evolution of the scattering data with
respect to t is simple. Hence, the above RH problem is specified in
terms of initial scattering data; its solution yields v¥(z;x,t) and
then (3.2a) gives gi{x,t).

,013]
We suimmarize the results of lSchoncerning mKdV in the case of

solitonless potentials.

Proposition 3.1 (Bounded eigenfunctions). A solution of (3.2a) bounded

for all complex values of z = zp *+ izI and tending to I as z - w is
given by
v zix), z, >0
v(z;x) = (3.3)
Y (zix), 2z <0

where Y!(z;x) satisfy the following integral equations:

. X
v z:x) = 1 +I ae

etzlx-g1J n!Q(a)Y!(z;E)

+m . °
- I dg elZ2(x 810y nylart (3.4)
X

where 1f F and Y are 2 x 2 matrices then
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IOF = Dieg(F‘l,Fzz).

-

N

'-

E{ Proposition 3.2 (Departure from Holomorphicity-Scattering Equation).

s

G v', ¥ are holomorphic functions of 2z for z; > 0, z; < 0 respectively.

The departure from holomorphicity for z = 2z is given by

e

>, . ~
o ¥ (zix) - Y (zix) = e (1-p7V(z)biz)) (3.6)

o
15

P where

g . iy e 20 oy

N B(z) + 1 + j dge n*(QY Y. blz) % 1 + j dfe n_(QY )

"\-$ -an -

AL so,

' 267 - -
. v iz;0e 2 s izbz) = vT(zix. (3.7)
-
$§ Proposition 3.3 (Inverse Problem-Reconstruction of Q)

.

= Q(x) is obtained from

- Qtx) = {J, - r dz'v(z';x)e?? % (1-p7 (2 )blz' )] (3.8) "
::_ 1'2_“' e H . J
:— where Y(z;x) solves the following Riemann-Hilbert boundary value problem:
L, : -

s - . .. iz'xd, . -1, _, .

: Y(z:x) = I + 2;1 J dz'Y(z';x)e (I-B (z')b(z2')) (3.9)
[ ~-- 2' - (z - 10}
b
™

s Using equation (3.2b) we obtain:

- Proposition 3.4 (Evolution of Scattering Data). The evolution of the

N scattering data from B(z;0), b(z;0) is g.ven by
2 Ugt Ugt

o B(z;t) = e B(z:0), b(z;t) = e b(z;0).

2 Since B (resp. b) is a strictly upper (resp. lower) triangular matrix :
Q the evolution of the scattering data is given by

",
2

- '
'bi?yﬁitETJLFQ}?&ﬁﬁﬁﬁ'"EQ“{T&QTE'“a?fft\Tf'Fd?:'}Sy:?{#F?:f\ﬁsvxﬂkaqfvxﬁcg'ﬂrf
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.3 .3
-8iz"t . - o812°C
B‘z(z;t) = e 812(2,0), b21(z.t) e

5w
il

bZ‘(z;O). (3.10)

“n 25

4. INVERSE PROBLEMS IN 2+1

A 5y

Let us consider the Davey-Stewartson equation (a two dimensional ana-
logue of the nonlinear Schrodinger equation)

4

AN,

. 1, 2 2 a2 22y
iQ  + 5o Qxx*ny) = -c"A|Q"Q +9Q, 0 -0 *yy 207L{Q] 7Y i

A=t (4.1)

OOy

as an illustrative example. A Lax pair for (4.1) is given by

1 0 0 Q
Yy © iz(Jy-¥J) + gy + oJ¥,, J # , q ¥ - {4.2a)
Y 0o -1 o

.:':“""”H RS

2,
+ A“{' - 2 ‘ABY-YA

(1

Yo T A3ty

v

+ AZYY 30) + 2sz3YY + 1zA27. (4.2b)

n

P

e

l’,

o

where Ay, AZ' A3, AJO are appropriate matrix functions of Q, Q (The bar

- denotes complex conjugate).

A ¢

(R SRS

The situation is conceptually similar to the case of 1+1: To solve

the initial value problem for qi(x,y,t) one first formulates an inverse

xS

problem for V¥(z;x,y,t). Depending on the value of ¢ there exist two

e

different cases (for brevity of presentation we assume non-existence

of poles, i.e., non-existence of lumps): (i) o = 1. There exists a

Y which is a sectionally holomorphic function of z and which has a

jump along the Re z axis. This jump is also given in terms of scattering

A SI,LL
A 4 ‘,.‘:

-

data but it depends on them in a non-local way. Thus the inverse pro-

blem is equivalent to a non-local, matrix continuous RH problem defined

»

along the Re z axis and uniquely specified in terms of scattering data.

Py

(fi) ¢ = - i. There exists a ¥ which is bounded for all complex z,
but which is analytic nowhere in the complex z plane. However, its

:l {w

departure from holomorphicity 3Y/3§ can be expressed in terms of appro-

s

priate inverse data. Thus, now the inverse problem is equivalent to a
3 (DBAR) problem: Given 3Y/3z recoastruct ¥

Using (4.2b), again one shows that the inverse scattering and the

R D

inverse data evolve simply in time. Hence, the above RH and 3§ problems

- .
L

are specified in terms of initial data; their solutions yield Y(z:x,y,t)

.
A
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K E
A .
;5 and then {(4.2a) gives q(x,y,t).
f; We summarize the results of [6] concerning DSI (0 = 1, Proposition )
: 4.1.-4.4) and DSII (g = ~-i, Propositions 4.5-4.8). )
;* Proposition 4.1 (Bounded Eigenfunctions) A solution of (4.2a) with -
oy ¢ = 1 bounded for all complex values of z = zp ¢ izI and tending to 1
s as z + = is given by
-
2 .
- Y (z;x,y), 2, > 0 3
Y(z:x,y) = { (4.3}
oy Y (z:x,y), 2, < 0 :
. L3
" ) '
f: where Y {(z;x,y) satisfy the following integral equations: By
X . s - .
. L - 1 iz{x-§)J im{(y-n)I+(x=-£)J] )
3 Yo ({z;x,y) =1 + VK] I ag e [ dnlam e . g
o - - j
. . R
- (w°+n!)(q(€,n)7 (z;€,n)) .
i . - %; I at exz(x-&)JI dnf dm eimlly-nl1 + (x-£)J], -
: X - - I
. ’
».* 3 3 L4
» n;(q((.n)? (z:;€,n)) (4.4) -
(cf. (3.5) for notation).
P .-‘
«: Assuming that the linear integral equations (4.4): have no homoge- K
2 neous solutions, it follows that: K
» Proposition 4.2 (Departure from Holomorphicity). Y‘, Y™ are holomorphic -3
- .
- functions of z for 2, >0, z, < 0, respectively. Hence the function >
’ :
‘ Y(z:;x,y) defined by (4.3) is a sectionally holomorphic function of z.
- . ay . 3y
. In particular, — = 0 for all 2z, with z_ ¢« 0 and — = v’ (z;x,y) -
) az I az
' Y (z2;x,y) for z = Zp- The departure from holomorphicity is given by: :
PV ‘:.
: + - iz'JIx+iz'y "
’ Y (z:x,y) - ¥ (2;x,y) dz Y (z2';x, yle o
4 o
) Tz, zremizIx"IZY (4.5) :
. for z = z_, where the scattering data f(z',z) are given by: fﬂ
3 -
4
S L B A A A R S A AT A A DISP AL O A A A AT A NS NI
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£ . (z',2) = ~ J dm f12(z',m)f21(m,z), f‘z(z',z)
- -

-(z+z')g+i(z-2')n

o -
] -
= ﬁj_-d‘,[_-d" 0Y;,
R r’ Get eilz+z')E+ilz-t)n .
£, (2", 2) = I_-dz _am Or}, e . Ey,=0. (4.7)

Proposition 4.3 (Inverse Problem-Reconstruction of the Potential q)

q{x,y) is obtained from:

¢ . .
qix,y) = - %;(J, j daz' J dz¥ (z';x,yle'? fo(z'.z)e
- = (4.8)

-inx+i(z'-z)y]

PP

where ¥ (z;x,y) solves the following integral equation:
12 fo(z'

-1z'JIx+i(z"-2')y

Y (z";x,yle 2% )e

P sauks

o (]
Y (z:;x,y) + I%T J daz” J dz'
—~= - z' - 2z + 10

= 1. (4.9)

=

. Finaliy from (4.2b) we obtain the following:

Proposition 4.4 (Evolution of the Scattering Data). The evolution of

the scattering data from t = 0, f(z',2;0) is given by:

. 2 2
£(z',2:t) = e % 30 f(z',z;00e% P30 (4.10)

where

S ST AN A S SN S Ay

f(z',z2;0) is given by (4.7) and A30 = diag(1i,-

v r
s 2
a

g S L A

Proposition 4.5 (Bounded Eigenfunctions). A solution of (4.2a) with
¢ = -i bounded for all complex values of 2z = zp ¢ izI and tending to I
as z - »« satisfies the following Fredholm linear integral equation

Yizix,y) = 1+ (G, . ¥lzi.,.))(x,y) (4.11) \
R' qu by
A
where :
X c..2 @ - Lod - *
(G, . ¥z, ¢,‘5-(J' dgj % m[ dn -j d({ dmj dn) )
R’ I'q ] — - )_. X 2 .= :.'d
137r )
{expl (m»x(!-J))z)(x—ﬂ)*xm(y-n)l[q(&.n)Y(z:E.n)l},j, t4.12), :;
o
.~
N
A
f
N
At N e L g TN I e 2 et e Y T T T g NN LN e A”f‘j:
° p L S Sl USRS,
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el ety

~~~~~ - v u P A AL IAC S e S iy R aiads L e,

and
(G Yiz;., .0}, % U gj Idmj dn-J'd(J' dmj dn)x
Zp%y-9 2 U, e X J-a= .
371
(exp(-(m+i(1+Jj)z)(x-€)+im(y-n)l[q(i.n)?(z;ﬁ.n)l)zj, (4_\2)2j
clj = I-Jj, c2j = 1+Jj, jo=1,2.
Proposition 4.6 (Departure from Holomorphicity). For every z ¢ C
Y -
—(2:;x,y) = Y(z:x.y)ﬂ(zR,zI;x,y) (4.113)
?
z
where the matrix f1 is defined by: 0‘1 = 022 = 0
nij % Tij(z)expeij(z:x.y), ie 3 (4.14)

i - aa ) ) ‘
T z) ¢ L I-dcj--dn(q(E'n)Y(z,i,n)}ij exp(-0, (z:(.n)}. 14

] )

612(z:x.y) $ 2i(sz + sz). 62‘(z:x.y) = 2i(-sz¢sz).

Propostion 4.7 (Inverse Problem-Reconstruction of q). qi(x,y) is ob-
tained from

alx,y) = [J, 7'7”(:7(2;:(,):) Qlzg,z ix.y)dz A d7) (4.15)

where ¥Y(z;x,y) satisfies:

Y2;x,y) - T:'T”g(i:x,y) Q(zh,255%,y) dz'adz’ _ (4.16)
2'-2

Finally from equation (4.2b) we obtain:

Proposition 4.8 (Evolution of the Inverse Data). The inverse data
at time ¢, ﬁ(zR,zI:x.y,t). is given by
t) (4.17)

-2 2
Q(zR.zI:x,y't) = expl{z A, .t) ﬂ(zR,zI:x,y.O)exp(-z A

30 3o

where Q(zR,zI;x,y,O) is given by (4.14) using the initial condition
q({x,y,0) and A30 = diagl(i,-i).
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' S. INVERSE PROBLEMS IN 0+1 5
\ v
The Lax pair associated with the PIV equation )
W)
: a®y 1 ay,2 , 3 3 2 2 8 N
, O,
. y "77‘3%’ + 3y s aty” # 20t s aly v o (5.1) N
, t N
: Y
N is given by b
P
w,
u oy
1 0 t u eo v 51 : i
Yz(z) = z + + =iY(2), '~
2 v 5
0 ) —(v eo-e ) -t E_(V 290) —(eo-v) ;n
(5.2a) ::
o
1 0 0 u ,
Y (z) = z 4+ Y(z). (5.2b) '
t 2 .
: 0 -1 G(v-eo—em) 0 '“.-.
: Indeed Yoo © Yoo implies ;ﬂ
L} :~
: L
\ d 2 du v,
a% = - 4v + y© + 2ty + 400. Jc ° —ul{y+2t), :'_
(5.3 -
46 .
N dv _ _ 2 2 0 _ by
- It = 7 vS o+ " ylv + (E)0 + 9 Jy, .;
f
where, ;}f
N
1 = 2 Ny
a =20 -1, 8 = -88,. N
- N
As in the cases of 1+1 and 2+1, solving the initial value problem -
; of PIV reduces to solving an inverse problem for Y: Reconstruct Y(z;t)
in terms of appropriate monodromy data. Again this inverse problem will -
be solved in terms of a RH problem. Thus it is essential to study the T
analytic properties of Y with respect to z. However, in contrast to
z the analogous problem in IST for 1+1 and 2+!, this task here is straight- AL
’ forward: Equation (5.2a) is a linear ODE in 2z, therefore its analytic :ﬁ<
. structure is completely determined by its singular points. In this fi
. particular case z = 0 is a regular singular point and z = = is an irregu- oy
lar sinqular point of rank 2. Complete information about z = = 18 =
: provided by the monodromy matrix M. and by the Stokes multipliers H
; a, b, ¢, 4. Solutions of (5.2a), YO and Y, normalized at zero and =
4‘_
’ '-.‘
<
~
N

e e e e e
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infinity respectively are related via a connection matrix Eo with

entries ay 80, Yo 60. Taking into consideration the above singula-
rities, there exists a sectionally holomorphic function Y, with jumps
across the four rays, arg z = - %, %. %1, %1 and with singularities

at z = 0, z = . The jumps are specified by a, b, ¢, d and the nature
¢f singularities by My, M_. This leads to a matrix, singular, dis-
continuous RH problem, defined on the above rays and specified 1n terms

of the monodromy data
Monodromy Data (MD) = (a,b,c,d, agBgrvgrégl-

A consistency condition of the above RH problem yields

( nGom = el'w
j=1 ] = 0 "0 "o

where G. are the Stokes matrices uniquely defined in terms of the Stokes
multipliers. Using (5.5) and certain similarijty arguments it can be
shown that all MD can be expressed in terms of two of them. Furthermore,
equation (5.2b) implies that the MD are time invariant. Hence the
above basic RH is specified in terms of two initial parameters (these
two initial parameters are obtained from the two initial datz of PIV).
The solution of this RH problem yields Y(z;t) and hence (5.2a) yields

yle).

The above basic RH problem can be simplified considerably: (i)
Assume 0 < e0 < 1, 0 < e. < 1, eo . %; then the above RH problem is
regular. It is interesting that the basic RH problem can be used to
obtain Schlessinger transformations which shift eo and e. by a half-
integer. By using these transformations the general case is reduced
to the reqular case. (ii) The basic RH problem can be mapped to a
sequence >f two RH problems, one on the line arg z = % and the other
on the line arg 2z = - %. The first one is continuous (both at x = 0
and x = a); furthermore, it can be solved in closed form. The second
one is discontinuous both at x = 0 and x = @. By using standard auxi-
liary functions one maps the discontinuous problem to a continuous
one. Then the theory of continuous RH problems on simple contours
can be used to establish uniqueness and existence of solutions. Elemen-
tary solutions of PIV, expressible in terms of Weber-Hermite functions

are natually obtained within the above formalism. We summarize the

results of (7) concerning PIV,
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Proposition 5.1 (Direct Problem). Let Y, be the solution of (5.2a)
analytic in the neighbourhood of z = 0 and normalized by the require-
ments that det YO = 1 and that YO also solves (5.2b). Let Y., j =
1,...,4 be solutions of (5.2a) analytic in the neighbourhood of infinity
such that det Yj = 1 and Y.~ Y_ as |x| -« ® in S_., where -~ denotes
asymptotics, Y_ is the formal solution matrix of (5.2a) in the neigh-

bourhood of infinity, and the sectors Sj are given by

-2 2 . 3

S] 3 < Arg z<q. 52. 3 < arg z < .
L] 5n . Sn Tx
83. T < 3r9 z < 54. T < arg z < g

The rays C,,...,C, are defined by arg z = %, %, T 7 respectively.

Pig. 5.1
Then the anlytic functions Yoo Y,,...,Y4 satisfy:
- D0 n
(i) Yo(z) ~ Yo(z)z as z - 0; D0 * 0169(90.-90). 8 * 3+ NE I,

where Y, (z) is holomorphic at z = 0. (If ey = n/2, ¥,(2) has
a logarithmic singularity.)

(i) ¥ (z) ~ Y“(z)eo(Z)

(1 /2) as |z} - =, z 1In Sj, D. ¢ Diaq(e_,-eo),
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2 .
Q(z) # Diaglg,-q), gqlz,t) # %— + zt, VYaol2z) 1s holomorphic at

T =" ».

2inJexp(2ing,.)

xp(21n60) 0
¥, (ze2'™) = v (z)M , M, ¢
0 0 0’ 0
0

exp(-Zineo)

. n .
J = 0 if 600 vk J =1 if 60 =

Yz(z) = Y‘(z)GI, Y.{(z) = Yz(z)G

3 Y‘(z) = Y3(z)63,

2'
Y. (2) = ¥,(zeli™)G M
1 4 M’

where

-
.
"

-
'~

1‘:"
;1‘4'

$F expl2inD

4 I\I

A

Y‘(z) = Yo(z)Eo,

e
Pl

5t te

Furthermore, the parameters

Y

MD ¢ (a,b,c,d, ag. By Yo 60)

e, 0 "\ ": *y _‘

satisfy the following consistency condition.

g
>

4

. -1 -1
(vi) (jl-l.‘ GyiM_ = Eg Mg Eq.

.-h\ S :‘ J\.ﬁ\. :‘.

Proposition 5.2 (Properties of Monodromy Data)

\}\f\ b

{i) The monodromy data, MD, given by (5.8) and defined in Proposition
S.1, are time-invriant.
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~
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vii) All of the MD can be expressed in terms of two of them. :
N
(1ii) (1ebclexp(2ing) + (ad + (1+cd)(1+ab)lexp(-2in8_) = 2 cos2ne, '
(5.10)

In what follows we formulate a RH problem for the case that
0 < eo <l, 0 < 9_ <1. This assumption leads to a regular RH problem.

The general case follows by considering this result and Schlessinger
transformations.

Theorem 5.1 (Inverse Problem). Consider the following matrix, regular

homogeneous RH problem along the four rays C‘,...,C4 (Figure 5.1):

Determine the sectionally holomorphic function ¥(z), ¥Y(z) = Yj(z) if
z is in Sj, j=1,...,4, from the following conditions:

1. 'j satisfy the jump conditions

?z(c) = Y,(c)g1(c). 73(c) = Yz(g)gz(c), V4(C) = 73(c)g3(c).

Y, () =¥ (¢ e?Mig,(g) (5.11)
along the rays CZ' C3, C4, C1 respectively, where
Y Q -Q i = z Q -Q
gj $+ e Gje . 1,2,3, 9y * e Gde M_. (5.12)
1 Du 1
2. v(z) ~ (=) (I + 0(3)) as |z| - =. (5.13)
z z

3. ¢(z) has at most an integrable singularity at the origin with a
munodromy matrix given by

2in -1
71(ze ) = Y,(z)Eo HOEO, z 0. (5.14)

In the above, Gj' Q, M_, D, Mo are defined in Proposition 5.1.
4. The monodromy data MD, given by (5.8), satisfy the properties given
in Proposition 5.2(ii). Then:
{1) The above RH problem is discontinuous both at the origin and at
infinity. Actually

k -1, 4

Tg. ~E M , 2 = 0; M g. ~M, z+ = (5.15)

o) 00 "0 . 3 =

J-' J-I
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N Fig. 5.2

N {ii) To obtain the solution of the above RH problem consider the

g following RH problem along the contour C‘ + C3: Determine the
N sectionally holomorphic function K(z), K(z) = Kl(z) if z 1n

p o, 51 + 52, K(z) = Kz(z) if z in S3 + 54, from the following

‘2 conditions:

1. K] satisfy the jump condition

[ 1 ge?d -1
h Mﬁh on C

0 -a/c

58
x

(]
=

~

=
N
»

LN

apl(z)

e
=2
=
-

Rty
P
cfelaa e

(S.16)
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(1€ hy» h2 denote h in 52 + s3 and S‘ + S, respectively then h=h,

'
on C,, h = hy on Cy.)

AASNING,

D
2. K(2) ~ () "I+ 01 as fz] - = . ($.17)
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3. K(z) has at most an integrable singularity at the origin with a

monodromy matrix given by

i - -1
' Kize?'™ = K(z)h (0)E;'MEGh]'(0), 2z -0, (5.18)

The above RH is discontinuous both at the origin and at incinity.
Actually if Ig Ik denote the jump matrices along C‘, C3 respectively
then ! 3

g-'q, ~ n (OE ' "EnT0), 2+ 0; g2

LI P 0 o “o™M ‘ B N

K1~ M, Z»=. (5.19)

However, the above RH problem can be mapped to a continuous one using
the auxiliary functions
10, 10

2 1
Z:1 . (;—T) v (5.20)

I+

to remove the above singularities.
Y is related to K via:

Yy = Kh if z in S‘+S ¥ = KhM, M % Diag(1,-a/c), {5.21)

27

if z in S3+S4

(i.e., Y, = K,h], 72 = thZ' Y3 = th'M, Y4 = KZhIM)'

Proposition 5.3 (The Solution of PIV). Let ¥(z) be the solution
matrix of the inverse problem formulated in Th2orem S.!. Then y(t),

1 du s 914
y(t) = -(E 3t + 2t), u * -21lim Yz‘(z)e

HE

-2q(z) (5.22)

solves P1lV.

6. INVERSE PROBLEMS IN n SPATIAL DIMENSIONS, n > 2

Consider the inverse problem associated with the following system of
N first-order equations in n+l dimensions:

n
Yx +0 L Jth = QqY, 0 = gg * log, O ¢ 0, n > 1, (6.1)

0 tal L I
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where q(xo,x) is an N x N matrix-valued off-diagonal function in R"”,

decaying suitably fast for large Xge X and the Jt are constant real
diagonal N x N matrices (we denote the diagonal entries of J, by Jl,

..J:). Alternatively, using the transformation
" n
V(z.xo,x) = u(z,xo,x)exp(i 151 zl(xl- aonl)l' z eC”, (6.2)

equation (2.13) becomes

e *to I (Jeu + izglJy,ul) = gqv. (6.3)
0 L=}

We assume that n < N, otherwise the entries of the Jl matrices will be
linearly related and one can always reduce n by a change of coordinates.
An inverse problem in this case is defined as follows: Given appropriate
inverse data T, where T is an N x N matrix-valued off-diagonal function
of suitable inverse parameters, reconstruct the potential q. Again
there exists a y which is bounded for all complex z, z eC". ausoz
depends on appropriate inverse data T(zR,z,,mz,...,mn), zp€ Rn, chR?
mlc R. T satisfies _—ST—_:,}.E_- .Using this equation and introducing
Born variables, T3y 249y

zZ, m c2 wolw'x: wo eR , w ¢ R, xc P (6.4)

one obtains a characterization eguation for the inverse data:

' ¢ nid P!

. g : prRdeINIP(Tl(wo,w,X )

T J(wo,w) # T J(wo,w,x) -5 I 2 ,(6.5)
R

Xp = Xp

where N is a quadratic function of T. That is, Tij(z,m) is appropriate
inverse data iff the right-hand side of (6.5) is independent of X.

gence, equation (6.5) serves as both characterizing Tij and defining

i) This equation was first introduced by Nachman and Ablowitz {8].
Using equation (6.5) and taking the limit of U as [x| = ® we show that
the general problem of reconstructing an N x N potential q in n+l spatial
dimensions, is reduced to one of reconstructing a 2 = 2 potential with
entries qij. qji in two dlmensiogs. The inverse data needed for this
reconstruction is precisely ;ij,Tji. This reduction makes crucial use
of the existence of redundant scattering parameters. In this sense it

is the analog of the Born approximation. However, the crucial difference

-
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is that while .in the inverse scattering of the multidimensional Schro-
dinger equation one can recoanstruct the potential in closed form, here
one can only reduce the general problem to one for 2x 2 matrices in

ing, we summarize the results of {9].
Proposition 6.1 (Bounded Eigenfunctions). The function p(xo,x,z)

defined below, solves equation (6.3), is bounded for all complex values
of z and tends to 1 for large k:

i
oon(oIJ‘)

a1
. expliB (x -{.,x, ~§ ,2)]
13 L li3 J' 0 %0 %178,
u (xo,x,z) 8 * o1 R2 dCodC,

i
(x‘-c1) - oJ‘(xo-io)

(qu (€ L8 xym (0, =E | 105/3 )0 e o= (xy =613 /37 20 2 €7 (6.5)

where 8'J s defined by

s n J.

1] :
g “(x,,x.,2) ¥ ¢
0'™M 11

Equivalently uij satisfies

i
.. - sgn(c.J,)
W'l x,2z) = 81 s —
2ni

exp[iexj(xo-io,x,-i,,z)l(qu)ij(ﬁo,ﬁ,z)

T ' (6.7)
x,=§,-0J,(x5-Ey)
where
2 i n 3y 1
dm® ¢ dmz...dmn, a (x,m) & L ml(xl—x1 —), c_ ¢ < (6.8)
L=2 33 N 1 B
Proposition 6.2 (Departure from Holomorphicity). Let pij be defined

by eq. (6.5). Then

S TR NPT R P PO LRI A A AR RN Sl WK S Rt SN
. .'_-.,.' \‘_&*\f\_:‘,..‘._,%f st '\..,,\' LRI A, ’\_,’, e '\»_\-

two dimensions. This reduced problem was solved in (6]. 1In the follow-
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2%
1
b
.}_‘.
f\
N
) i.l& (XO.X'Z) - L Y*(J1 - Jg)exp[iﬁu(xo,x‘,z)]
!"y' 92 1:] P
'.1" p
v,
»
T 2 i ij i)
S x oy [ nor dmlexplio om itz mutxg 0 Mzm e (6.9
\ R
. where B‘J(xo,x,.z), a'(x,m) are defined by (6.6), 6.8) respectively; Eij
S
L. is an N x N matrix with zeros in all its entries except the 1)‘“, which
‘J-- . PRy
,E} equals 1; and X‘j and T are given by
) .
”*'f«' . .. n J" ..
ij ij L i3 -
Ayilz,m) ¢ (zl - I m -T2, ), Ar (z,m) = (zr wmo,z }: r=2,..,n.
o,
% Ly a et
T v % 0/4ﬂ1|J101|,
\‘l
»
5
. i e o i3
Eo ™lz,m ¢ fnnﬁ dgydg exp[-xe”(co,c‘,z)-m (€, m](qu) 3((0,:,z).
:-‘ (6.10)
A
": Proposition 6.3 (Characterization of T)
L\ ..
i (a) Assume that 3u/8£p is given by Eq. (6.9) and the T'?(z,m) is given
:'.: * by (6.10). Then
.’:
o,
>
£ 113 n ISTONY L)
Lidp )(z,m) =- rLc f av“rr otz My memit Bz, m
rp g=1 n-1 Rn"
L
b L_+) it L_.) PR ] i ]
o - - _ - - PSS
_:: x[(Jp Jp)(Jr Jr) (Jr Jr)(Jp Jp)] Nrp[Tl(Z,m), (6.11)
N
’ v
- where
I’}
Eﬁ Lid goqad - gdy L ogl o)y A (6.12)
! rp P P .3 r ro,z ’
e 3z a2
¥ i P
- ¥
'J -
3 (b) Assume that 3u/dZ, is given by Eq. (6.9) and that Bzu/azrazp
;{ is symmetric with respect to r, p. Then ™)z, m) solves (6.11).
v
b.”
N Following A. Nachman and M. J. Ablowitz we introduce appropriate
> Born variables. Then equation (6.11) can be integrated. Furthermore,
? we can compute the limit of T'J in the new coordinates as prl - - 1
" (see below): ]
" ]
i' L
i |
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b
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N A NV N NSNS L NN L A G L e TN TN NN




By e e T T Y W T . T T R I W R T TR 9 T (T O R LA a Aty

iR

; ;
) i) ij = ! ! = 2 o
n Let Woe WyTe W [ 2,....n ¢ R and xlcC P ) +.-+,n, be R
Y defined by v
i_;3 i_y i I
i .
.. n J -J . s n J_-J n J .
wile ¢ £ L lol2z, , wi? 4 - ¢ ELoz,- I m - :
r=1 %1 1 r=1 aIJl r=2 J! %
1 “ 4
LW ¢
ij Zy ]
w, #m, X $ ——, L = 2,...,n. (6.13) 4
L L L J? ~ J:
Assume that
r_.j i_.J i_.3 S o A 7
: (3 J,)(Jp Jp) v (I Jl)(Jp Jp), for all distinct i,j,r and ps1. .
¢ (6.14) Ry
For convenience of writing we usually suppress the superscripts, i,j ;
in WorWyo X- Let z denote 2,,...,2,, M denote MayeeeeoMos X denote '
% X270 Xpr ¥ denote w,,...,w . Then we have the following. _;
; ta) The inverse of the transformation2zm - woe Woo X is given by -
J J
. j_.i n j i E:
: z, ’Xl(J"J1)' mo =Wt = 2,....0, 2, = - tEZ(Jr-Jr)xtf N
2 -2 n i ¥
k. (6/]a|"Vwg + L w I A
, r=1
. . (6.15) N
J o_ i >
7 8
- :
. {b) In the new coordinates, Eq. (6.11) with r = | becomes N
3 aTij ij X
—(wg,w,x) = N]g('l‘l(wo,w,x), p=2,...,n. (6.16)
‘ 3xp .
y L
1 &
N (c) In the new coordinates, il
. &3
- 'j . . ...
; i - s ij
. T (wg v ) In“” dgodE expl-ilw L swE) 1 qu) g, € wy w.x), .
)
where 3
o n 3
wf = rfl w.bk, (6.17)
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(d) Let
L3 L ij i3 i3 N Y
vy ¢y (xo,x,w0 WO,y 7)), T lim P
Ixpl==

Then the ﬁij satisfy

i
sqn(aIJ‘) . I .
n-1 2n

13
oo, , X, W, , W) =
0 0 293

dxédx'du} exp[i((xo-xb)wo +(x-x")w}]

1) [} * ‘1) ] ]
q (xo,x )ui (xo,x ,wo,u),

w1} S
X, =%, cJ‘(x0 xo)

33 sgn{0_J%)
By (x, ,x,wy,w) = 1 ¢ cee————c j x
i 0 0 2mi n-1 2n

dx'dx'dw qJ‘(x L% )u‘J(x JX W, w) .
0 0 0 ' ﬁtj = 0, for all £, Lej, L),

-t - 3 -
X, =%} OJ‘(xo xo)

(6.19)
(&) vlim 1w ,w,x) = In"*' dEodE expl-ilwgLoswg)] x
lxpl4¢
CREIT P ST TRIT FO0 FUPRP R I SR CP (6.20)
(f) The basic characterization equation is given by
. S p'
-5 (5 \ dprdprN,plTI(wo.w.x )
N ,w) o= T (e, ,w,x) - = f ©(6.21)
0 0 ] R2 X - X
P P
P’ '
where denotes P TERE xp_,. xp. xp+,..... b P

It follows from the above that as lx |+=, the ij's decouple.
Furthermore, the ulJ 33 satisfy a system of two equations depending
on qU jl It turns out that: (a) By introducing appropriate spatial

varxables £, the ﬁ:j, jjsatxaty equations in two spatial {imemsions.
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b (b) The inverse data needed to reconstruct uiJ, u;~ fand hence g 7,
J ) can be obtained from TLJ .
\h
(i Proposition 6.4 (Reconstruction of q). Let
N: "
RPR R PN T RERPIN PR L
3 27r r-2 - lr l'r - 1 6
°t —lT_-T;' Bt = :IT—)'_)—{' r s e, ( .22) :
- 393 - 99, 172 = 933
J!
- where for convenience of writing we have suppressed the dependence of
= . n
°r’8r on i,j. Let £, ¢ R, £ eR
Y
: Xg = Egr X = &y Xy = & (6.23)
Az xl = Cl + °£€‘ + 81 (2, L =3,...,n. l
- Then we have the following:
r,
o (a) The system (6.19) becomes p
.. i
v . :
4 ;2 )(e ,e,3) = sgn oty dgrdg (g, €1 - od (g, - €17’
. i '&g-b 90 71 r2 CR0SR1tEThy 1180 0 4
3 i 3
\,: x eXPllelJ(Co‘Colﬁl'E,'Z)]q ]uzj(gorcllﬁz = (El-C Ji153""'5 2, rE
~) 1
- ;)3 o] j -1
: 633(g 6,80 = 1+ sgn = j , AEadEile -€) - 03](g €40
2 . ) 4
K. « gl e (g, e, 6, - (£ -E1—2, € £ ,2) (6.24) )
.: q ui oo ‘r 2 1 1 JJI 3:---1 nl ’ .
- where ! -
- ) _ g :
i: z % ; (zrar + i%—~—i% zrer), Bij(xo,x\,i) .
o £=1 i -9 it
. i3 ,
; .. Ji=- J (o2)
ij ay o2 ) 1 2 - ) -
K~ B (xo,xl,z) ¥ — [xolol z, X, A ]. (6.25) .
W I J1 -
N (b) 77 in the new coordinates becomes ]

'1(z,/) = [ dE6d¢° exp(-i8'Jcgy.€1,8) »
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Wy e sl IR
1 ]

i
J n o
- ' . 2 2 ] 13']) ' . 5
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J, r=3
! where
, n
) m m = =
' m, ¢ m, + ri} m B my m., t J,....n. (6.27)

{c) The inverse data associated with (6.24) and the analogous problem

.f for ﬁg‘, ﬁ;i are given by Tij. Tji. Let 5
ij 33 3 -
T (z.(2‘51 1’ CJ""'Cn) ¥ € j n-1 dam explxmz(gz—g‘ _T)
I R S .
» ‘_
- n - . :
: v i e 1T, ). (6.28) N
- re3 °°F >
” -
3 Then
v . i -'-
- le(" - J2 ) % de rdr ( ﬁl]( ' ' )] 2
:. z'€2 (1 ‘T'E]:--o:ﬁn ¥ J' 2 Eo (| expl-1 (0'(]'2 _-
. J R
N 1 .
~ i -
i3:33 %
b . Q7w g, 8.8, - (£,-€7) e S S 2N (6.29)
. 1 .
: Equations (6.1)-(6.3) with ¢ = -1 lead to a system which appears f
N to be physically more interesting: (a) Since the system 1s hyperbolic one 3
3
may consider the physically important question of inverse scattering (IS); ~
A i.e., given a scattering amplitude function S(A,k) find the potential :?
X q(xo,x). (b} A special case of the above system, namely if the J's are :{
. constrained by "
; L p| i 3
J- - J J. - J
_E_—__%_ = —%————% . p, r =1,...,n, 1,3, = 1,...,N, (6.6) S
Jr - Jr Jr - J. o
! o
is associated with the N-wave interaction in n+! spatial and one temporal :ﬂ
dimensions [10]. The above system can be considered as a limiting case .
: of (6.1)-(6.3) [8]. Alternatively, it can be considered on its own right 3'
- (11]; the problem of reconstruction can be reduced to one for a 2 x 2 2
. matrix problem in two spatial dimensions. ji
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